

Literature LabTM analysis of pathway associations relevant to prognostic gene signatures for breast, bone and lung cancer metastasis

Damon Anderson, PhD, Applications Scientist and Paul Martinez, President and CEO, Acumenta Biotech, Westminster, MA. Co-responding author: Damon Anderson, PhD, danderson@acumenta.com, 412-901-7785

The landmark breast cancer metastasis study by van't Veer, et al. 2002. Nature (415) 530-536 identified a 70-gene signature derived from microarray analysis of 117 patients that was strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumor cells in local lymph nodes at diagnosis (lymph node negative). We applied Literature Lab[™] analysis on this gene signature to identify significantly associated pathways, thus offering a modern perspective based on the current PubMed content and Literature Lab[™] analytics. Published gene signatures derived from microarray data from lung and bone metastatic tumors were then analyzed using Literature Lab[™] and significant pathways were identified and compared. The Id signaling pathway showed a strong association with lung while the CXCR4 pathway was strongly associated with both lung and bone, results well supported in the literature. Importantly, Literature LabTM identified the IL1 pathway, which was exclusively associated with lung, and the CCR5 pathway. which was significantly associated with lung and bone. The unexpected associations of these immune factor pathways and their roles in the lung and bone metastatic microenvironments indicate potential novel areas for future investigations. Moreover, these results and others showcase the powerful capabilities of Literature Lab[™] as a genetic analysis platform that can offer validation and uncover meritorious functional associations missed by other genetic analysis tools.

Click on column header	s or buttons to s	ort columns	or rows. Click ag	Diseas Based on gain to reverse	es-MeSH/I PubMed abstract	Pathways s from 01/01/1 ter the first few	-			L	i di 29 (?) N T 7		
Cens contain the LPP for	r the terms. Clic	K ON A CEN LO	Visualizer		IIS. RIGHT CIICK	Close this	Subset		Row Ter	m:	Column T	erm:	Find
Term	Abstract Count	View	Breast Cancer	ERBB2	ErbB Signaling	Estrogen Signaling	Antigen	E-cadherin Signaling	BRCA1	mRNA Surveillance	EGF	RNA Polymerase	Basal Cell Carcinoma
Abstract Count		301103	39669	8930	9937	45592	310335	7566	6634	4555	37456	92157	3307
View Genes													
Carcinoma, Ductal, Breast 🕨	12261		-2.4598	-3.0156	-3.0919	-3.3238	-4.0610	-4.2173	-4.3255	-4.4215	-4.4965	-4.5620	-4.6252
Carcinoma, Non-Small-Cell Lur	32779		-4.7004	-3.8775	-3.6533	-5.3683	-4.0492	-4.2147	-4.9749	<u>-3,7391</u>	-2.8713	-4.0073	-4.2074
Disease Models, Animal	275869		-3.4349	-3.9188	-3.9293	-3.7172	-2.3996	-4.3978	-4.9954	-4.5236	-3.8653	-3.1677	-4.8540
Bronchial Neoplasms	39034		-4.7393	-3.9359	-3.7100	-5.4122	-4.0738	-4.2559	-5.0328	<u>-3.7890</u>	-2.9324	-4.0099	-4.1928
Inflammatory Breast Neoplasn	215		-3.5684	-4.2005	-4.4212	-4.9085	-5.2222	-4.6550	-	-5.9909	-5.2158	-6.3427	
Breast Neoplasms, Male	2304		-4.0240	-4.8524	-4.8988	-4.9584	-5.8716	-7.2413	-4.4238	-	-6.0275	-7.3728	-6.8819
Small Cell Lung Carcinoma	6083		-5.0022	-5.1775	-4.7986	-5.7582	-4.4801	-4.9781	-6.4018	<u>-4.7192</u>	-4.0470	-4.5009	-4.2406
Hereditary Breast and Ovariar	<u>144</u>		-4.5289	-6.1092	-6.1556	-5.6131	-6.6960	-	-3,4226	-	-6.7319	-	-
Pulmonary Sclerosing Hemang	146			<u>-6.1152</u>	<u>-6.1616</u>	<u>-6.8232</u>	<u>-6.4521</u>	-	-	-	<u>-6.7379</u>	-7.1289	<u></u>
Palatal Neoplasms	<u>1180</u>		-	-6.4207	-6.4671	l.	-7.1658	-	1	-	-7.6454	-8.0364	-6.5913
Nose Neoplasms	8588			-7.2827	-7.3291	-	-5.9450	-6.6086	-7.7557	<u>-6.6381</u>	<u>-6.8172</u>	-6.4902	<u>-6.0554</u>
Skull Base Neoplasms	2526		-	-7.3533	-7.3997	-	-7.4963	-7.2813	-	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	-7.9760	-8.3670	<u> </u>
Solitary Pulmonary Nodule	2690			-7.3806	-7.4270		-7.7175	-		-	-8.0033	-8.3943	<u></u>
Mandibular Neoplasms	<u>4379</u>		-8.2398	-7.5922	-7.6386	-	-7.9291	-	-	-	-	-8.0038	-5.7629
Spinal Neoplasms	7362		-6.3071	-	8-	-8.5259	-7,4503	-		-	-7.8385	-8.8315	-7.3864

The Literature LabTM basic viewer is shown above with co-occurrences tabulated between diseases (breast, lung, bone neoplasms; y-axis) and pathways (x-axis). The pathways are ranked by the strength of their associations in the literature with Carcinoma, Ductal, Breast from highest strength association according to LPF (log of product of frequency). Blue dots hyperlink to the genes associated in the literature with the disease or pathway. All other data is hyperlinked directly to the PubMed literature.

The log of product of frequency (LPF) is a quantitative measure of the strength of association based on the fractional co-occurrence between a term/gene and a term. The Literature LabTM basic LPF is defined as $Log(X/T1 \times X/T2)$, where X/T1 is the percentage of abstracts that mention the first term and X/T2 is the percentage of abstracts that mention the second term. The Literature LabTM PLUS LPF is defined as $Log(X/G \times X/T)$, where X/G is the percentage of gene abstracts that mention the term and X/T is the percentage of term abstracts that mention the given gene. The LPF is not sensitive to abstract volume and the closer to zero the stronger the association.

Literature Lab[™] PLUS was employed to analyze a 70-gene signature derived by DNA microarray analysis on primary breast tumors of 117 young patients. This gene expression signature is strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumor cells in local lymph nodes at diagnosis (lymph node negative).

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer, et al. *Nature***415**, 530-536 (31 January 2002)

Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70–80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of *BRCA1* carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.

Statistically significant associations are scored according to qualifiers as shown below:

Tier				
>1024	Positive	Moderate	Strong	h Parameters
513-1024	1.00	1.50	2.00	F Score >=
257-512	0.1587	0.0668	0.0228	Value <=
129-256	75	50	25	rm Rank <=
65-128	10.0	15.0	20.0	NonZero Genes >=
33-64	2	2	3	te Min NonZero Genes
17-32	10	25	50	X Term Abstracts >=
9-16	100.0	99.0	98.0	Single Gene % Contrib
5-8	250	500	750	Random Sets >=
3-4		-		
2) Default Value	Set t
1		lues for use	aca Qualifier v	You may save th
0		ides for use	ese Qualmer vi	rou may save u
Total		view by	ments that yo	with all exper

The P-value and other measures of statistical significance are used to derive the strength of association. The heuristics involved reward associations for representation of more genes in a set and downgrade associations driven by sparse data. The qualifier criteria can be adjusted according to experimental goals but typically default values are used for straight forward analysis. Importantly, Literature LabTM is the only platform that treats each gene list (and gene) as unique and finds significant associations in literature based on LPF and statistical qualifiers. Other methods search for associations between an experimentally derived gene list and pathway or domain information within curated databases, without regard for the uniqueness of each gene set.

The 'Highlights' tab displays the MeSH term domains that were used in the analysis (left column of left panel) and the number and strength of associations that were identified based on the qualifiers (right side of left panel). The right panel displays the identity of the associations, the score, and the p-value. Strong (green), Moderate (blue), and Positive (pink) pathway associations are shown:

	Strong	Moderat	e Positive	Visualize
Pathways	9 4	<u>10</u>	23	
Diseases-MeSH	01	9 2	<u>9 45</u>	
PathologicalCond-MeSH	9 5	<u>5</u>	9 2	-
PharmacoAction-MeSH	0	<u>1</u>	9 9	
PharmacoSubst-MeSH	2	<u>) 3</u>	23	
ChemicalActions-MeSH	2	4	0 2	-
ChemicalsDrugs-MeSH	15	4 6	179	-
Anatomy-MeSH	2	0 6	24	
Physiology-MeSH	<u>3</u>	9 <u>12</u>	16	-
CellPhysiology-MeSH	<u>8</u>	🥥 Z	🥥 Z	
CellTypes-MeSH	0	<u> 5</u>	<u>8</u>	-
CellStructures-MeSH	🔵 Z	🥥 Z	🥥 <u>4</u>	
<u>CellLines</u>	2	5	10	-
TissueTypes-MeSH	01	5	0 11	
Metabolism-MeSH	2	0	3	-
Biogenetics-MeSH	4	<u>16</u>	🥥 Z	
OtherBiology-MeSH	<u>5</u>	1 7	<u>) 17</u>	-
Organisms-MeSH	0	01	🥥 11	
Substances-MeSH	3	<u>8</u>	<u>) 34</u>	-
Psychology-MeSH	0	01	0	-

Associations include a number of pathways well documented in cancer growth and development including: Cell Cycle/Cyclins, DNA replication/G1/S Phase, etc. Other pathway associations have well documented ties to metastasis including: Angiogenesis/VEGF, Matrix Metalloproteinase, Beta-Arrestin, etc. Pathway associations representing interesting areas of investigation in the literature are also uncovered. For instance, the Insulin pathway has been the target of research and therapeutic discovery over the past few years. However, the complex cross talk between factors and receptors has made it elusive in the treatment of breast carcinoma.

VEGF 3.57 0.0002 3.16 0.0008 Angiogenesis 2.27 0.0116 p53 **DNA Replication** 2.03 0.0212 Moderate Assocations for Pathways Term P-Value Score G1/S Checkpoint 2.95 0.0016 2.76 0.0029 Cyclin 2.51 0.0060 Cell Cycle IGF-1 2.49 0.0063 UPAR 2.35 0.0095 IGF-1R 2.10 0.0180 TGF Beta 2.07 0.0194 CDC42 1.84 0.0332 0.0360 1.80 FOXM1 Ubiguitin Mediated Proteolysis 1.80 0.0362

Strong Assocations for Pathways

Term	Score ¥	P-¥alue	
Matrix Metalloproteinase	4.31	0.0000	
Gemcitabine	3.61	0.0002	
p27 Phosphorylation	2.68	0.0036	
<u>CDK</u>	2.59	0.0048	
RAS RHO	2.24	0.0126	
Retinoblastoma	2.22	0.0133	
RB Tumor	2.07	0.0193	
<u>p73</u>	2.05	0.0203	
E2F	2.03	0.0211	
TGF-beta Receptor	2.00	0.0228	
PI3K	1.85	0.0319	
Antisense	1.85	0.0320	
FGF	1.76	0.0389	
G2/M Checkpoint	1.76	0.0391	
RNA Polymerase	1.76	0.0392	
Aurora Kinase	1.70	0.0443	
Insulin	1.62	0.0525	
Breast Cancer	1.62	0.0525	
Visual Signal	1.61	0.0537	
Hypoxia p53	1.51	0.0661	
Beta-Arrestin	1.48	0.0693	
C-MYB	1.44	0.0755	
TSP-1	1.18	0.1182	

Click on column head Percentages = prop	lers or buttons	to sor ment !	Ex t columns or Set LPF contr	cperiment: r rows. Click aga ributed by a gen	Copy of v ain to reverse ne. Click on a	ant Veer M Based on Publ sort order. Ent cell to view the	Domain letastasizi led abstracts fro ter the first few abstracts for t	n: Pathway ng Breast m 01/01/1990 r letters of a ge he gene and te	/S Cancer Sig through 02/28/2 ene and/or tern erm. Right Click	nature Se 2015 In to find a cell.	pt 2015 up 15.	odate 2	U	o 4 3 N T .
<u>.</u>	Clear/Set/Use C	heck Ma	arks		Create a Subs	et of the Domain		Visu	alizer 😽		Gene:	Te	erm:	Find
Pathways	Count	~	VEGF	Angiogenesis	p53	DNA Replication	G1/S Checkpoint	Cyclin	Cell Cycle	IGF-1	UPAR	IGF-1R	TGF Beta	CDC42
iew All Genes For Term													1000 * 1000	
sociation 🕨			Strong	Strong	Strong	Strong	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
ne X Term Abstracts		2.31	3769	2761	1324	1029	1786	3426	5432	550	514	152	2145	12
rm Abstracts		2 3	27043	35926	41025	31771	18198	27450	170719	15523	<u>5004</u>	4511	42664	463
nzero Genes		-	27	25	37	32	26	30	50	17	9	11	33	
F			-1.29	-1.89	-2.08	-2.29	-1.56	-1.15	-1.87	-2.19	-2.66	-2.83	-1.90	-2.2
ndom Sets 🛨	Count		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
periment Set	Term rank		10	10	14	17	8	21	26	44	27	43	44	
	Score		3.57	3.16	2.27	2.03	2.95	2.76	2.51	2,49	2.35	2.10	2.07	1.8
	P-Value		0.0002	0.0008	0.0116	0.0212	0.0016	0.0029	0.0060	0.0063	0.0095	0.0180	0.0194	0.033
	Score rank		3	4	20	31	6	8	13	15	17	25	28	2
mbol/OrigID	Max PF		95.51%	83.17%	79.13%	64.09%	98.17%	98.85%	84.79%	97.56%	98.86%	97.58%	93.20%	89.94
199	21389		3./1%	13.1/% 0	0.4/%	0.05%	0.1/%	0.10%	1.35%	0.21%	98.86%0	0.76%	5.15%	0.15
FP2	5059	(mm)	95.51%	83.1/%0	0.07%	0.01%	0.00%	0.00%	0.65%	0.06%	0.80%	0.14%	02.205	0.01
IFD0 M1	2297		0.05%	0.14%	0.05%	0.01%	0.01%	0.01%	0.020/	0.59%	0.02%	0.16%	93.20%	0.07
NE2	160		0.02%	0.119/	10 169/ 8	64.00%	09 179/ 1	0.01%	94 708/ 8	0.270/	0.06%	0 200/	0.00%	0.03
T203	9766		0.03%	0.02%	19.10%	0.00%	30.1/%	0.00%	0.020/	0.0/%	0.10%	0.38%	0.00%	0.03
LEMU INI	900		0.03%	1 2094	0.03%	0.00%	0.00%	0.00%	0.03%	0.00%	0.01%	0.03%	0.00%	
SD1	186		0.01%	0.67%	0.02%	0.01%	0.00%	0.00%	0.03%	0.01%	0.05%	0.03%	0.00%	0.05
E18	198		0.03%	0.11%	0.00%	0.0176	0.01%	0.00%	0.00%	0.13%	0.0076	0.07%	0.11%	0.00
FBP5	1205		0.01%	0.01%	0.02%	0.01%	0.01%	0.00%	0.21%	97 56%	0.03%	97.58%	0.22%	0.05
C80	314		0.0176	0.0176	0.01%	0.03%	0.02%	0.01%	1 54%	57.5076	0.0376	37.30 /6	0.00%	0.01
K	753		0.00%	0.00%	0.04%	0.36%	0.02%	0.00%	0.29%				0.00%	0.01
N4DI 1	1014		0.00%	0.00%	0.0478	0.30 /8	0.0276	0.00 /8	0.01%				0.01%	
NIDA	807		0.00 %	0.00 %	0.04%	0.59%	0.11%	0.01%	1.46%				0.0176	0.04
C3	614		0.00%	0.02%	79 13%	0.01%	0.01%	0.12%	0.85%	0.03%		0.07%	0.02%	0.04
14 M	014		0.00 78	0.0276	13.13/0	0.0170	0.0176	0.1270	0.00 /0	0.0076		0.0270	0.0270	

Shown above are the pathway associations in the 'Details' tab of the Literature LabTM PLUS viewer. Down the y-axis are the qualifiers used to establish the strength of associations including: the number of gene abstracts, the number of term abstracts, the number of non-zero genes, the log of product of frequency, the number of random sets, the term rank, the score, the p-value, etc. Also shown is the list of genes and their relative contribution to the LPF with hyperlinks directly to the literature. Across the x-axis are the associations, which can be ordered by any of the rows on the left column. (Note: shown is a truncated list of genes and pathway associations).

The paper discussed functional annotation for the genes in the 70-gene signature, which provided insight into the underlying biological mechanism leading to rapid metastases. Genes involved in cell cycle, invasion and metastasis, angiogenesis, and signal transduction are significantly upregulated in the poor prognosis signature (for example cyclin E2, *MCM6*, metalloproteinases *MMP9* and *MP1*, *RAB6B*, *PK428*, *ESM1*, and the VEGF receptor *FLT1*.

Literature LabTM PLUS found a number of associations between the signature and these gene pathways (*e.g.* VEGF, Metalloproteinases, etc.). Interestingly, some pathways are not significantly associated as indicated by the qualifier scores (*e.g.* MCM6, RAB6B). In the paper, the authors do not detail a comprehensive annotation of all of the genes in the signature. A powerful aspect of Literature LabTM PLUS is that it treats each gene in the signature as unique and derives a statistically significant association of the entire signature based on scoring parameters. Another important aspect to note is the difference in dates of this published work (1/2002) and the current build of the Literature LabTM database (3/2015). Undoubtedly, there has been a progression in published papers following the role of certain genes in specific pathways, thereby leading to an increase in the strength of association during this time. Likewise, other gene/pathway associations have not been as fruitful and therefore the strength has likely diminished.

Clustering analysis on the significant terms and the genes in the70-gene signature was then explored using the Literature LabTM PLUS 'Term/Gene Cluster' tab. Eight clusters of genes with related function were identified and three of these and their associated heat maps are shown below.

Clusters 2 and 3 are related to cell cycle associated pathways including G1 phase, cyclins, mitosis, microtubules, as well as signaling pathways well documented with tumor proliferation including, aurora kinase, retinoblastoma, E2F, and C-MYB, etc. Cluster 6 is related to pathways associated with tumor metastasis including, matrix metalloproteases, CDC42, etc. The heat maps are an indicator of strength of association of each clustered gene with a pathway, and each box is hyperlinked directly to the PubMed literature.

Nature 415, 530-536 (31 January 2002) doi:10.1038/415530a

The landmark paper authored by van't Veer *et. al.* defined a prognostic 70-gene signature that identifies the metastatic potential of breast tumor cells. This signature was originally associated with several cell growth, metastatic, and angiogenesis pathways.

We next wanted to compare pathway associations between this 70-gene metastatic signature and two signatures linked with metastasis targeted to two organ systems: 1) lung and 2) bone. The goal was to identify pathways that are related to the distinction between basic metastatic potential and metastasis targeted to specific tissues, *i.e.* lung and bone.

In the paper entitled **Genes that mediate breast cancer metastasis to lung** (Andy J. Minn, *et al. Nature* **436**, 518-524. July 28 2005), the authors define a 95-gene signature indicative of aggressive lung metastatic behavior by means of transcriptomic microarray analysis of highly and weakly lung-metastatic cell populations. The genes in this signature were largely distinct from those identified in bone metastatic isolates derived from the same parental line (see below). A 54-gene subset of this signature, which was more similar to the lung metastatic populations selected *in vivo* and postulated to serve specialized lung-related function, was selected as a refined signature. Included are genes associated with: EGF and HER/ErbB signaling, MMP1 and MMP2 matrix metalloproteases, and the IL13Ra2 and VCAM1 receptors, the latter indicating specific roles in the lung tumor microenvironment.

In the paper entitled **A multigenic program mediating breast cancer metastasis to bone** (Yibin Kang, *et al. Cancer Cell* **3**, 537-549. June 2003), the authors define a 102-gene signature indicative of osteolytic bone metastasis by means of microarray analysis of highly and weakly bone-metastatic cell populations. Most of these genes encode osteolytic and angiogenic factors and interestingly, none of the genes in the signature overlap with those in the van't Veer signature.

Using the gene list comparison tool, Literature Lab[™] PLUS identified several pathways that are associated with all three of the gene lists, including those involved in angiogenesis, cell adhesion, and apoptosis.

We then looked at specific pathways that were identified in the previous papers as uniquely indicative of either lung or bone metastasis. Previous work identified gene combinations that act synergistically to promote lung metastasis including: ID1, SPARC, IL13Ra2, VCAM1, MMP2, MMP1, CXCL1, EREG, and COX2.Whereas, genes that were identified as promoting bone metastasis include: IL11, OPN, CXCR4 and CTGF.

The Id Signaling pathway (ID1, inhibitor of DNA binding), previously identified as being significantly upregulated in lung metastasis, shows a predictably strong association with the lung metastasis gene set here. Interestingly, while IL1 is an inflammatory cytokine expressed by macrophages typically associated with infection, it shows a moderate association exclusively with the lung metastasis gene set. "Educated" macrophages often arise in response to the tumor microenvironment, and the exclusive moderate association between IL1 and lung metastasis may indicate a promising potential area of investigation.

Recent research has also pointed to the critical role that CXCR4 receptor and its ligand CXCL12 play in the metastasis of various types of cancer. Lung, bones and lymph nodes all secrete high levels of CXCL12, which acts as a chemoattractant that drives CXCR4-positive primary breast tumor cells towards these secondary metastatic sites. Therefore, it is not unexpected that the lung and bone gene lists show strong associations with CXCR4. It is however interesting that CCR5 shows a moderate association with these gene lists.CCR5 is predominantly expressed on T cells, macrophages, dendritic cells, eosinophils and microglia, and it is likely that CCR5 plays a role in inflammatory responses to infection, though its exact role in normal immune function is unclear. CCR5 may be another emerging player in the tumor metastasis microenvironment area that warrants further investigation.

PLK3 (Polo like kinase 3) is a cytokine inducible serine/threonine kinase that has been implicated in a number of cancers including breast cancer. The fact that it is strongly associated with the bone metastasis gene set, to a significantly greater degree than the other two gene sets, implies that there is a focus on the role of PLK3 in bone metastatic cancer. Likewise, PLK3 may be yet another promising target for further investigation.

We next used the Literature LabTM gene set comparison feature to compare the lung and the bone gene signatures and to identify pathways that are significantly different between the two.ID Signaling is moderately different according to the statistical data and qualifiers, consistent with our earlier result. Interestingly, there are a number of pathway differences (*e.g.* Fatty Acid Biosynthesis, Multi-Drug Resistance, Colorectal Cancer, Nitric Oxide, etc.), which may be useful in further characterizing these metastatic subtypes and helping to drive hypotheses and future studies.

×Liter	ature ×				Experiment 1 E	Pathway) Gene Lists E (periment 2) I	s Domain (Breast Cancer Breast Cancer	Compariso Metastasis Lu Metastasis Bo	n Ing Nature 20 one 3	05			L	oi 4 () N T 7
Click on column hea	ders or buttons	to sort	columns or	rows. Click ag	ain to reverse	sort order. En	ter the first few	letters of a ge	ene and/or ter	m to find a cell.				
Percentages = prop	portion of Experi	iment Se	et LPF conti	ributed by a ge	ne. Click on a	cell to view the	abstracts for t	he gene and te	erm. Right Clic	k for Annotatio	ns.			
			Show	Differences (cli	ick on Associat	ion row to reve	erse) 🥘	Show Similari	ties	Show Significa				
	Clear/Set/Use C	heck Mar	ks		Create a Subset of the Domain		Visualizer 😽			Gene:			erm:	Find
Pathways	Count	✓ Fatt Acid Bios	:y I ynthesis	Multi-Drug Resistance	Colorectal Cancer	Id Signaling	Granulocyte Adhesion	Nuclear Receptors	Nitric Oxide	Acute Inflammatory Response	Leukotriene	Cyclophosp	Cytochrome P450	AHR
View All Genes For Term		1000			· · · · · · · · · · · · · · · · · · ·									
Association 🕨		St	rong 1^	Strong 1^	Strong 1^	Moderate 1	Moderate 1	Moderate 1	Moderate 1	Moderate 1	Moderate 1	Moderate 1	Moderate 1	Moderate 1
Gene X Term Abstracts			10297/723	220/54	1774/210	1232/195	673/74	333/51	4289/349	679/77	515/33	89/26	475/45	519/115
Term Abstracts		191	915/191915	9294/9294	27817/27817	14864/14864	5979/5979	10379/10379	63726/63726	8466/8466	6269/6269	3393/3393	13727/13727	11348/11348
Nonzero Genes			36/27	25/10	37/23	28/17	16/10	27/13	26/18	20/9	13/9	14/6	22/12	33/17
LPF			-1.92/-3.90	-3.33/-4.70	-2.74/-4.09	-1.70/-3.90	-2.37/-4.26	-2.72/-4.74	-2.26/-3.88	-2.98/-4.38	-3.09/-5.07	-3.73/-4.83	-2.67/-5.03	-2.41/-4.03
Random Sets 🛨	Count		1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000	1000/1000
Experiment Set	Term rank	1	6/796	60/758	97/855	13/699	54/476	215/917	47/526	68/579	82/700	22/438	202/788	67/475
	Score	1	2.17/-0.90	1.47/-0.68	1.23/-0.91	3.08/-0.59	1.94/-0.08	0.83/-1.16	1.76/-0.22	1.65/-0.28	1.32/-0.56	1.98/0.10	1.04/-0.82	1.71/-0.14
	P-Value	0.0	0149/0.1849	0.0703/0.2469	0.1096/0.1826	0.0010/0.2763	0.0264/0.4671	0.2020/0.1237	0.0392/0.4135	0.0497/0.3912	0.0939/0.2862	0.0238/0.4595	0.1500/0.2074	0.0437/0.4442
	Score rank	1.	24/576	63/537	87/579	7/509	33/334	141/608	43/372	52/397	80/499	32/277	105/569	48/351
Symbol/OrigID	Max PF	94	.29/37.99%	88.25/51.70%	76.19/29.97%	98.24/26.34%	86.87/60.12%	91.49/45.23%	91.85/49.69%	45.35/46.01%	84.35/27.42%	85.16/47.17%	93.23/21.13%	73.53/72.87%
PTG52	32308		94.29%	2.93%	76.19%	0.89%	0.17%	1.89%	91.85%	26.86%	84.35%	1.95%	2.40%	0.94%
MMP2	19379		0.43%	0.74%	8.10%	0.17%	0.25%	0.15%	1.49%	2.32%	0.53%	0.52%	0.02%	0.22%
VCAM1	9579		0.53%	0.09%	0.23%	0.10%	86.87%	0.33%	4.34%	8.94% m	2.23%	0.41%	0.03%	0.11%
CXCR4	9463/9463		0.04/4.19%	2.19/51.70%	1.34/29.97%	0.02/3.22%	0.76/60.12%	0.04/4.54%	0.11/4.48%	0.48/12.03%	0.25/23.81%	3.75/47.17%	0.00/0.74%	0.17/7.32%
MBP(GID:4155)/**MBP	7247		0.07%	0.08%	0.01%	0.01%	0.02%	0.03%	0.25%	1.40%	0.10%	0.78%	0.00%	0.03%
MMP1	5502/5502	0	.40/37.99%	0.04/0.89%	0.49/11.03%	0.08/12.47%	0.02/1.40%	0.06/6.17%	0.19/7.71%	0.10/2.53%	0.29/27.42%	<u> </u>	0.03/6.96%	0.08/3.38%
CASP1	4554		0.10%	0.25%	0.50%	0.10%	0.04%	0.04%	<u>1.17%</u>	<u>13.24%</u>	0.07%	<u>1.70%</u>	0.01%	0.03%
TNC(GID:3371)/**TNC	3712		0.01%	0.02%	0.31%	0.01%	0.03%	0.00%	0.02%	0.11%	0.08%	0.17%	-	0.05%
CTGF	3607		13.60%	2.41%	3.14%	20.09%	0.09%	5.29%	5.76%	7.89%	2.07%	8.80%	10.61%	4.45%
CXCL1	3018		0.17%	0.12%	0.63%	0.14%	<u>11.37%</u>	0.04%	0.46%	45.35%	4.39%	0.47%	0.02%	0.06%
SPARC	2596		0.02%	0.01%	0.56%	0.00%	-	0.03%	0.01%	0.02%	0.01%	0.06%	0.01%	0.00%
EPHX1	2326		2.92%	0.16%	0.14%	0.00%	0.00%	0.03%	0.05%	0.04%	5.69%	1.09%	93.23%	0.51%
1.11	2004		3.81%	0.27%	2.68%	3.20%	22.11%	4.23%	2.12%	46.01%	0.93%	15.84%	19.10%	1.19%
FST	1812		1.21%		1.98%	1.87%	1.53%	1.17%	0.65%	7.70%			21.13%	0.05

Summary

The Literature Lab[™] basic platform allows exploration of the PubMed database, highlighting co-occurences such as disease vs pathway, or co-morbidities *i.e.* disease vs disease. Breast, lung, and bone neoplasms were compared with pathways ranked according to strength of co-occurrence or LPF. The Literature Lab[™] PLUS platform allows the identification of statistically significant associations between gene lists and term domains in the PubMed literature. In the 70-gene signature from the van't Veer study, strong, moderate, and positive associations were linked with several hallmark pathways of metastasis, a result shared with the lung and bone gene signatures.

Interestingly, the gene set comparison feature highlighted several pathways specific to either lung or bone, or shared by both. This indicates that there are pathways specifically associated with these tumor metastatic microenvironments that may suitable for targeted investigations and potential therapeutic development. Moreover, there were several other pathway associations not typically associated with metastasis that may be fruitful for future investigations. This latter result highlights the hypothesis generation potential of the Literature LabTM platform.

The literature record within PubMed is too vast (>20 M publications to date) to permit comprehensive interrogation and identification of actionable associations. Over 4 M abstracts mention one or more human genes and modern high content genomic technologies are producing data at rates that outpace meaningful interpretation. Acumenta Biotech has created Literature LabTM, the only literature mining-based platform that identifies statistically significant associations between gene lists and key concepts in the literature. At the basic level, Literature LabTM can explore co-occurrences between term domains, *e.g.* diseases versus pathways. At a more rigorous level, Literature LabTM PLUS interrogates gene lists, including those derived via high content platforms, and scores the strength of each gene set / term domain association and significance based on 1000 random gene list comparison. It respects the uniqueness of each gene set and returns consistent and unique results. Literature LabTM identifies significant associations in a time efficient manner and reveals concepts and relationships in the literature that other gene analysis platforms cannot.

Damon Anderson, PhD Application Scientist 412-901-7785 danderson@acumenta.com The best way to see the power and benefits of Literature Lab[™] directly is to send us a gene list for complimentary analysis. <u>Click here</u> to register for a complimentary analysis or to be notified about upcoming Literature Lab Webinars.